Interleukin-17F-induced pulmonary microvascular endothelial monolayer hyperpermeability via the protein kinase C pathway.

نویسندگان

  • Qing-hai You
  • Geng-yun Sun
  • Nan Wang
  • Ji-long Shen
  • Yuan Wang
چکیده

BACKGROUND Interleukin (IL)-17F is involved in lung inflammation, but the effect of IL-17F on endothelial permeability and its signaling pathway remain ill-defined. The current study sought to investigate the effect of IL-17F on endothelium and assess the role of protein kinase C (PKC) and src-suppressed C kinase substrate (SSeCKS) in this process. METHODS Rat pulmonary microvascular endothelial monolayers were constructed to determine changes of permeability as measured by means of FITC-dextran and Hank's solution flux across monolayers and transendothelial electrical resistance with or without IL-17F and PKC inhibitors. Additional monolayers were stained using FITC-phalloidin for filamentous actin (F-actin). The gene expression of SSeCKS was analyzed by the reverse transcription-polymerase chains. Alterations of SSeCKS protein were investigated by immunoblotting and immunoprecipitation. RESULTS IL-17F increased endothelial monolayer permeability in a dose- and time-dependent manner. F-actin staining revealed that permeability changes were accompanied by reorganization of cytoskeleton. In the presence of PKC inhibitors, the IL-17F-induced hyperpermeability and reorganization of F-actin were attenuated. The gene and protein expression of SSeCKS were conspicuously elevated after IL-17F challenge. The process of SSeCKS phosphorylation followed a time course that mirrored the time course of hyperpermeability induced by IL-17F. IL-17F-induced SSeCKS phosphorylation was abrogated after PKC inhibitors pretreatment. The translocation of SSeCKS from the cytosol to the membrane and a significant increase in the SSeCKS association with the cytoskeleton were found after IL-17F treatment. CONCLUSIONS IL-17F is an important mediator of increased endothelial permeability. PKC and SSeCKS are integral signaling components essential for IL-17F-induced hyperpermeability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of PKC and PKD in pulmonary microvascular endothelial cell hyperpermeability

Tinsley, John H., Nicole R. Teasdale, and Sarah Y. Yuan. Involvement of PKC and PKD in pulmonary microvascular endothelial cell hyperpermeability. Am J Physiol Cell Physiol 286: C105–C111, 2004. First published September 17, 2003; 10.1152/ ajpcell.00340.2003.—The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional ( , I, II, and ), novel [ , , , and (also...

متن کامل

Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability.

The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (alpha, betaI, betaII, and gamma), novel [delta, epsilon, eta, and mu (also known as PKD), theta], and atypical (zeta and iota/lambda), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-...

متن کامل

p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM.

Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial ...

متن کامل

ROCK mediates thrombin's endothelial barrier dysfunction.

Thrombin-induced endothelial monolayer hyperpermeability is thought to result from increased F-actin stress fiber-related contractile tension, a process regulated by the small GTP-binding protein Rho. We tested whether this process was dependent on the Rho-associated protein kinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects of Y-27632 on thrombin-induced myosin light chain pho...

متن کامل

Endothelial contraction and monolayer hyperpermeability are regulated by Src kinase.

Endothelial monolayer hyperpermeability is regulated by a myosin light chain phosphorylation (MLCP)-dependent contractile mechanism. In this study, we tested the role of Src-dependent tyrosine phosphorylation to modulate endothelial contraction and monolayer barrier function with the use of the myosin phosphatase inhibitor calyculin A (CalA) to directly elevate MLCP with the Src family tyrosine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of surgical research

دوره 162 1  شماره 

صفحات  -

تاریخ انتشار 2010